Understanding Power Factor

Presented by Scott Peele PE

Understanding Power Factor

- Definitions
 - kVA, kVAR, kW, Apparent Power vs. True Power
- Calculations Measurements
- Power Factor Correction
 - Capacitors
- System Impacts
 - I² R losses, Chapter 9 NEC
 - Equipment sizing
- Power Factor Charges
- Problems with adding Caps
 - Harmonic resonance
 - Volt rise
- Power Factor vs Load Factor

What is Power Factor

Power Factor is the cosine of the phase angle between current and voltage.

Power Factor is the ratio of true power to apparent power.

Understanding Alternating Current AC

Duration Time

Phase Angle

Three Basic Circuits or Loads

- Resistive -ww-
- Inductive
- Capacitive —
- Or any combination
 - Resistive Inductive
 - Inductive Capacitive

-WW-uw-|(--

- Resistive Capacitive
- Resistive Inductive Capacitive

Types of Loads

- Resistive Incandescent Lamp Resistance heat
- Inductive Motors Contactor Coils Relays (coils)
- Capacitive Capacitors Start Capacitors
 Run Capacitors Power Factor
 Correction Capacitors

Resistive Loads In Phase

Duration Time

Inductive Loads Lagging

Duration Time

Capacitive Loads Leading

Duration Time

What is Power

- Power is measured in Watts.
- Volts X Amps X Power Factor = Watts
- Watts only equals Volts X Amps when the Power Factor is 1 or unity.
- Most of the time the Power Factor is less than 1.
- Power = Watts : True Power
- Volts X Amps = VA : Apparent Power

Understanding Right Triangles

Power Triangle

Cos
$$\theta$$
 = Adjacent side

Hypotenuse

Power Factor = $\cos \theta$

Understanding Power Triangle

B= True Power

Watts, KW, Power

VAR, kVAR Reactance

Progress Energy

Graphical representation of resistance, reactance, and impedance

Graphical representation of resistance, reactance, and impedance

10 HP 460 Volt 4 Pole Motor

Transformer

Conductor

Load	Power Factor	VA	Amps	Watts	VAR	Amps Reactive	Amps Resistive
125%	0.82	13203	16.6	10883	7476	9.4	13.7
115%	0.81	12240	15.4	9972	7099	8.9	12.5
100%	0.79	10830	13.6	8592	6593	8.3	10.8
75%	0.73	8771	11.1	6397	6002	7.5	8.0
50%	0.61	7105	8.9	4323	5639	7.1	5.4
25%	0.40	5886	7.4	2331	5405	6.8	2.9
min load	0.17	5399	6.8	911	5322	6.7	1.1

= KW Load (resistive)

= KVAR Load (reactive)

10 HP Energy Flow

10 HP Adding Capacitance

10 HP Energy Savings

Transformer

Conductor

200 Feet of #12 Gauge wire

Saving are calculated on I² R losses.

Using a # 12 gauge wire from Table 9 in the NEC the resistance is 2 ohms per 1000 feet. 200' @ 2 Ohms/1000' is .5 ohms. Using this the total saving will be approx. 11.8 watts. **NOTE: This is only if the capacitor is at the motor.**

I² X R = Watts

10 HP Capacitor Sizing

Power Factor Penalty

Based on one month operation at 8 hours a day

		PF Charge Factor		
NC Charge		\$0.40	kW Charge	\$10.25
Max Billing kW		8.592	kWh Charge	\$0.03854
Power Factor		0.79		
Calc	kVA	10.8759	kW	8.6
Calc	kVAR	6.6681	kWh	2064
Less than .85 then a \$0.40 charge For kVar – (kW X.62)				
For kVar – (_	PF Charge	\$0.54	
For kVar – (In this Ca	(kW X.62)	PF Charge	\$0.54 \$88.15	
	(kW X.62)			

10 Horse Power Motor

10 HP Voltage Rise

Conductor

200 Feet of #12 Gauge wire

kVAR * X_{source} /kVA/100 = Voltage Rise % Note This does not include the wire inductance that will cause some additional rise in voltage.

Things We have Talked About And Other Things to Talk About

- Phase Angle
- Power Factor
- I²R Loss
- Power Factor Penalty
- Voltage Rise
- Harmonic resonance
- Load Factor --- Power Factor

Harmonic Resonance

Harmonic Filters

Power Factor Vs Load Factor

- They have no relation
- Load Factor is kW at 100% operation
 Yielding so many kWh vs. Actual kWh

Example

Hours in a Month = 30 X 24 = 720 Hours

Load is at 8 kW

8 X 720 = 5760 kWh

Actual kWh by load is 3240

Load Factor then is 3240/5760

Load Factor = .56

Understanding Power Factor

- Definitions
 - kVA, kVAR, kW, Apparent Power vs. True Power
- Calculations Measurements
- Power Factor Correction
 - Capacitors
- System Impacts
 - I² R losses, Chapter 9 NEC
 - Equipment sizing
- Power Factor Charges
- Problems with adding Caps
 - Harmonic resonance
 - Volt rise
- Power Factor vs Load Factor

Questions

